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ABSTRACT 
 

 
A factor of safety (FS) method for quantitative estimates of grid/time 

uncertainties for CFD solutions is derived to remove the deficiencies of GCI, corrected 

GCIC, and correction factor (CF) methods, i.e., unreasonably small uncertainty when CF 

> 1 (estimated order of accuracy greater than theoretical) and lack of statistical analysis to 

prove 95% confidence for the estimated uncertainties to bound the true error. The 

approach follows the CF method but reflects the uncertainty instead of FS for CF < 1 for 

CF > 1 (CF = 1 is asymptotic range). FS at CF = 0 and 1 are determined by reliability and 

lower band of the confidence interval of the true mean based on statistical analysis using 

a large sample of analytical/numerical benchmarks covering 17 studies, 96 variables and 

304 individual grid triplets. Only the FS method provides 95% confidence that the actual 

factor of safety FSA > 1 for the 304 grid convergence studies: confidence intervals are 

86.2%, 92.1%, 91.5%, and 95.7% for GCI, GCIC, CF, and FS. For 20% of the data 1.1 ≤ 

CF < 2.0, GCI, GCIC, and CF methods fail as only 47.4%, 71.2%, 72.9% confidence 

intervals are achieved, whereas 89.3% is achieved for the FS method. Only the FS 

method has 95% confidence the lower band of the confidence interval for FSA is larger 

than 1.2 for different studies, variables, ranges of CF, and single CF values where 

multiple FSA 
are available. 
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I. INTRODUCTION 
 

Current quantitative error estimates for grid size and time convergence are based 

on Richardson extrapolation (RE), i.e. the error is expanded in a power series expansion 

with integer powers of grid spacing/time-step as a finite sum. It is common practice to 

retain only the 1st term of the series assuming the solutions are in the asymptotic range 

(AR), which leads to a grid triplet study. The grid convergence index (GCI) derived by 

Roache [1] can be used to estimate the uncertainties due to grid/time errors and is widely 

used and recommended by ASME [2] and AIAA [3]. Stern et al. derived the correction 

factor (CF) method [4] with improvements made by Wilson et al. [5]. They introduced a 

variable factor of safety (FS) as a function of the CF so that FS increases linearly with 

distance of solutions from the AR. CF is defined by: 

              

1
1

RE

th

p

p

rCF
r

−=
−

            (1) 

where REp  is the estimated order of accuracy and thp  is the theoretical order of accuracy. 

CF provides an important metric that quantifies the distance of solutions to the AR. As 

shown later, CF is also useful for statistical analysis, for which analytical benchmark 

(AB) or numerical benchmark (NB) data can be organized according to the same CF 

values. The CF method is validated for CF < 1 using AB including one-dimensional wave 

and two-dimensional Laplace equations. Since the AB approach AR from CF < 1, it is 

assumed that the FS for CF > 1 is obtained by reflecting the FS for CF < 1 with respect to 

AR (CF = 1) assuming FS is the same at the same distance from the AR. 

There are several problems of using RE. As shown by Stern et al. [6], it is 

difficult to improve the accuracy by retaining more terms in the power series. When 

solutions are not in the AR, multiple grid triplet studies often show non-smooth 

convergence, i.e., REp  approaches thp  in an oscillatory fashion with a large range of 

values [2]. RE requires at least 3 systematic high quality grids, which may be too 

expensive for industrial applications. The grid refinement ratio r must be carefully 

selected. r cannot be too large as the grids may resolve different flow physics. Too small 

values of r (i.e., very close to one) are also undesirable since solution changes will be 
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small and sensitivity to grid/time-step may be difficult to identify compared to iterative 

errors. 

The non-smooth grid convergence problem may be resolved using the least square 

method (LSM) [7] or response surface method (RSM) [8], which requires at least 4 

solutions. There are some issues of implementing the LSM/RSM: (1) the relationship 

between the LSM/RSM and the individual grid triplet studies is not established; (2) it 

does not discriminate between converging and diverging grid studies and the use of 

diverging solutions is not well founded; (3) the requirement of at least four gird solutions 

is often too expensive for industrial applications; (4) all solutions are required to be in the 

AR, which is contradictory to the use of non-smooth and non-monotonic converged 

solutions; and (5) it introduces additional uncertainties due to the least-square fit. The 

expensive cost of using RE may be resolved using the single-grid uncertainty estimate 

approach [9] but this approach is not well developed for three-dimensional problems and 

does not provide sensitivity of solutions to grid size and time step. 

GCI and CF methods have two deficiencies. Uncertainty estimates when 

RE thp p>  (CF > 1) are unreasonably small in comparison to those with the same distance 

to AR for CF < 1. This is due to the fact that the error estimate REδ  for the former is much 

smaller than that of the latter. There is no statistical evidence for what confidence interval 

GCI and CF can actually achieve. It is claimed by Roache [1] and the ASME 

performance test codes committee PTC 61 [10] that a 95% confidence interval is 

achieved for GCI with FS = 1.25 based on over 500 demonstrated cases by dozens of 

groups. However, this is only based on anecdotal observations as no statistical 

distributions or analysis are reported in the references cited in [1], [10], or [11] to support 

this claim.  

A recent study by Logan and Nitta [8] evaluated 10 different methods on 

uncertainty estimates using limited statistical analysis including solution verification 

method reliability Rsm and the reduced Chi-Square 2
*vX . A higher value of 2

*vX  indicates 

that a solution verification method is too conservative. The use of corrected GCI (GCIC) 

with FS = 1.25 is much closer to a 68% confidence estimate than 95%. There is no 

apparent correlation between Rsm and 2
*vX  , i.e., a method may have very good Rsm but 
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2
* 1vX >> . Since this study only has 3 structure problems with 18 individual grid 

solutions, it was suggested that a larger sample set with the number of grid convergence 

sets much larger than 100 is needed to draw any general conclusions.  

 Two other recent studies [12, 13] have considered the use of different uncertainty 

estimates for different ranges of REp  for monotonically converged solutions. The idea is 

not new as it was the basis for the CF method as per Stern et al. [4], although the CF 

method was not referenced. Eca and Hoekstra [12] extended the LSM for a nominally 

second-order accurate method, i.e., 0 0.95REp< < ( 0 0.31CF< < ), 0.95 2.05REp≤ <

( 0.31 1.05CF≤ < ), and 2.05REp ≥  ( 1.05CF ≥ ). According to the authors, the estimates were 

based on the experience obtained in a variety of test cases and the suggestions and 

comments of the first Workshop on CFD Uncertainty Analysis [14]. Similar ideas were 

used by Rumsey and Thomas [13] who provided different formulas for different ranges 

of REp  for a nominally third-order accurate method, i.e., 0 0.95REp< < ( 0 0.13CF< < ), 

0.95 3.05REp≤ < ( 0.31 1.04CF≤ < ), and 3.05REp ≥  ( 1.04CF ≥ ). Since the authors did not 

provide detailed derivation or validation of their estimates and REp  ranges it is difficult to 

understand their differences. Here again statistical distributions or analysis are not 

reported. 

The overall objective of this study is to develop a FS method that removes the 

above deficiencies and achieves an overall 95% confidence interval for the estimated 

uncertainty to bound the true error. The approach is to extend the CF method by 

reflecting uncertainty not FS for CF < 1 for CF > 1 with respect to the AR. The FS 

method provides the flexibility of specifying FS at CF = 0 and CF = 1, i.e., FS0 and FS1, 

which will be determined using rigorous verification studies covering a wide range of 

problems that have either AB or NB data. Statistical analysis includes the reliability and 

confidence interval for the mean of the actual factor of safety (FSA). The FS method will 

be compared with GCI, GCIC, and CF methods. It should be noted that the idea of 

reflecting uncertainty not FS for CF < 1 for CF > 1 with respect to the AR is not new as it 

was first reported in an earlier study by the authors [15]. However, the original idea was 

developed only logically based on observations that uncertainty estimates for  CF > 1 are 
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unreasonably small and simply tested on one example of ship hydrodynamics application. 

It was not validated by AB and NB as conducted herein. Additionally, the original idea is 

altered so that users can flexibly specify FS0 and FS1. Due to these facts, the present work 

supersedes the previous report [15]. 

 

II. ERROR AND UNCERTAINTY ESTIMATE USING RICHARDSON 

EXTRAPOLATION 
 

Grid/time convergence studies are conducted with multiple solutions using 

systematically refined grid sizes or time steps. First r for grid/time is selected. As an 

example, if 3, 2, and 1 represent the coarse, medium, and fine grids with grid spacing 

Δx3, Δx2, and Δx1, respectively, then  

            

32

1 2

xxr
x x

ΔΔ= =
Δ Δ

       (2) 

Constant r is not required [1] but simplifies the analysis and thus used herein. Solution 

changes ε for medium-fine and coarse-medium solutions and the convergence ratio R are 

defined by 

              

21 2 1

32 3 2

21 32

S S
S S

R

ε
ε

ε ε

= −
= −

=
       (3) 

When 0 1R< < solution monotonic convergence is achieved and generalized RE is used 

to estimate order-of-accuracy REp , the error REδ  and numerical benchmark SC. The error 

is expanded in a power series expansion with integer powers of grid spacing/time-step as 

a finite sum. The accuracy of the estimates depends on how many terms are retained in 

the expansion, the magnitude (importance) of the higher-order terms, and the validity of 

the assumptions made in RE theory. In general, 2n+1 solutions are required to estimate 

SC and the first n terms in the power expansion. When solutions are close to the AR, grid 

spacing is sufficient small and the lower-order terms in the expansion dominate. If only 

the first term is retained (n=1), three grid solutions are needed to provide estimates for 

REp , REδ , CS  
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( )
( )

32 21ln
lnREp

r
ε ε

=        (4) 

             

21

1RERE pr
εδ =

−
       (5) 

               
1C RES S δ= −       (6) 

Eqn. (5) provides the error estimate with both sign and magnitude but not an “error band” 

(uncertainty) in which the users can have some practical level of confidence. 

Roache proposed the GCI method. The idea behind GCI is to approximately relate 

the ε21 in Eqn. (5) obtained by whatever grid convergence study (whatever pRE and r) to 

the ε that would be expected from a grid convergence study of the same problem with the 

same fine grid using pRE = 2 and r = 2, i.e. a grid doubling with a 2nd-order method. The 

relation is based on equality of the error estimates. Given an ε21 from an actual grid 

convergence test, the GCI is derived by calculating the error estimate REδ  from Eqns. (5) 

and (4), then calculating an equivalent ε21 that would produce approximately the same 

REδ  with pRE = 2 and r = 2. The absolute value of that equivalent ε is the GCI for the fine 

grid solution, which is conveniently expressed as [1] 

                                                  

21 | |
1REGCI REpU FS FS

r
ε

δ= =
−

   (7) 

FS can thus be regarded as a “factor of safety” over the RE error estimate REδ . Roache 

suggested FS = 1.25 for systematic grid-triplet studies using RE estimate for order of 

accuracy REp  and FS = 3 for 2-grid sensitivity studies using theoretical estimate for order 

of accuracy thp . In Fig. 1, FS = 1.25 is plotted versus CF, which suggests constant FS for 

all ranges of CF values. 

Logan and Nitta [8] also used GCIC, which modifies Eqn. (7) by discarding REp  

and use thp  when RE thp p> . As can be easily shown, GCIC is equivalent to multiply FS 

by CF when CF > 1, which leads to 

                                               
1

1

RE

GCI

RE

FS CF
U

FS CF CF

δ

δ

⎧ ≤⎪= ⎨
× >⎪⎩

    (8) 
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 The CF method was derived based on AB for CF < 1, which shows that an 

improved error estimate is to multiply Eqn. (5) by CF 

         

21

1RERE pCF CF
r

εδ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
      (9) 

The use of Eqn. (9) will replace REp  using thp . However, REp  is not discarded but 

included in CF. The uncertainty is estimated by the sum of the absolute value of the 

corrected error estimate from RE and the absolute value of the amount of the correction 

                                       ( ) ( )1RE RE REU FS CF CF CFδ δ δ= = + −      (10) 

As criticized by Roache [16], Eqn. (10) is deficient for CF ≤ 1 in only providing 50% 

confidence level. Wilson et al. [5] revised Eqn. (10) for proper behavior for CF < 1 by 

increasing FS for decreasing CF, i.e. FS is a function of CF. Then the variable FS for CF 

< 1 is reflected for CF > 1 with respect to the AR (CF = 1). Additionally, they modified 

the formula for proper behavior for CF = 1 by providing 10% FS in the limit CF = 1 
while smoothly merging with previous CF method uncertainty estimates for 
|1 | 0.125CF− ≥  for the uncorrected solutions.  

 ( )
( )29.6 1 1.1 0.875 1.125

2 1 1 0 0.875 1.125

RE

RE

RE

CF CF
U FS CF

CF CF or CF

δ
δ

δ

⎧ ⎡ ⎤− + < <⎪ ⎣ ⎦= = ⎨
⎡ − + ⎤ < ≤ ≥⎪⎣ ⎦⎩

(11) 

As shown by Wilson et al. [5, 17] and Fig. 1, the CF method is equivalent to the GCI, but 

with a variable FS. The variable FS has the “common-sense” advantage in providing a 

quantitative metric to determine proximity of the solutions to the AR and approximately 

accounts for the effects of higher-order RE terms. The CF method has been used in ship 

hydrodynamics CFD workshops. 

 

III. FACTOR OF SAFETY METHOD 
 

The overall approach of the FS method follows the CF method [4, 5] with a linearly 

varying FS for CF < 1. However, it has two improvements on top of the CF method by 

introducing two flexible parameters, FS0 and FS1. Additionally, it reflects the uncertainty 

rather than the FS itself for CF <1 for CF > 1 with respect to the distance from CF = 1. 



7 
 

Recommended values of FS0 and FS1 are determined using large sample of AB or 

NB and statistical analysis compared to only AB and no statistical analysis for the CF 

method. The procedure is to minimize the two parameters until two criteria are met: (1) 

overall at least 95% confidence interval is achieved for the FSA is larger than 1; (2) at 

least 95% confidence that the lower band of the confidence interval for the true mean FSA 

is larger than 1.2.     

Following Stern et al. [4] with improvements by Wilson et al. [5], the FS method 

first assumes that uncertainty estimate has the same form as Eqns. (10) and (11) for 

1CF ≤ , i.e. ( ) REU FS CF δ=  and FS is a linear function of CF that increases with the 

distance from CF = 1. However, FS1 and FS0 are multiplied before the corrected estimate 

from RE and the absolute value of the amount of the correction, respectively: 

                                   ( )1 0| | | 1 |RE REU FS CF FS CFδ δ= + −     (12) 

Or                   

                              [ ]
( )

1 0| | |1 | | |RE

FS CF

U FS CF FS CF δ= + −
14444244443

       (13) 

For 0 1CF< ≤ , the above formula becomes 

                         [ ]1 0 (1 ) | | 0 1REU FS CF FS CF CFδ= + − < ≤
 

 (14) 

To overcome the too small uncertainty estimate for 1CF > , the uncertainty instead of the 

FS in 1CF ≤  is reflected for 1CF >  with respect to the distance from the AR [15]. First, 

REpr  in Eqn. (5) is re-expressed based on the definition of CF: 

        ( )1 1thRE ppr CF r= − +      (15) 

Second, Eqn. (5) is substituted into Eqn. (14) with the use of Eqn. (15), which results in 

an alternative form of U 

                       [ ] ( )
21

1 0 (1 ) 0 1
1thp

U FS CF FS CF CF
CF r

ε= + − < ≤
−

  (16) 

CF  in the above equation is replaced by 2 CF− . Thus for the same r , thp , and 21ε , 

Equation (16) becomes:        
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                 [ ]1 0(2 ) ( 1) 1 2
2 RE

CFU FS CF FS CF CF
CF

δ= − + − < <
−

  (17) 

In summary, uncertainty for uncorrected solutions using the FS method is: 

                   
[ ]

[ ]
1 0

1 0

(1 ) | | 0 1

(2 ) ( 1) 1 2
2

RE

RE

FS CF FS CF CF
U CF FS CF FS CF CF

CF

δ

δ

⎧ + − < ≤
⎪= ⎨

− + − < <⎪ −⎩
  (18) 

Compared to the CF method, the FS method introduces an additional term ( )2CF CF−  

to compute U  for CF > 1. When CF increases from 1 to 2, this term increases rapidly 

from 1 to infinity, which amplifies FS when solutions are further away from the AR. The 

FS method is only applicable for 0 < CF < 2.  CF = 0 is the border of convergence and 

divergence such that grid errors/uncertainties are infinite due to infinite REδ  as a result of 

0REp = , i.e. solution changes for the medium and fine grids are equal to those for the 

coarse and medium grids. For CF > 2, solutions are too far from the AR and also 

regarded as divergent. Figure 1 compares the theoretical FS predicted by GCI, GCIC, CF, 

and FS methods. FS = 1.0 suggests that the design meets but does not exceed the 

minimum requirements with no room for variation nor error while too high FS results in 

excessive weight and/or cost. 

The FS method provides users flexibility in specifying FS0 and FS1. To determine 

the “optimal” values for FS0 and FS1 and validate the FS method requires “iterations” 

based on statistical analysis of a large sample of data (see Section 4). The iterations 

outcome are FS0 = 2 and FS1 = 1.25: 

                        
(2 0.75 ) | | 0 1

(0.5 0.75 ) 1 2
2

RE

RE

CF CF
U CF CF CF

CF

δ

δ

⎧ − < ≤
⎪= ⎨ + < <⎪ −⎩  

  (19) 
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Figure 1. Factors of safety for GCI, GCIC, CF, and FS verification methods. 

 
 

IV. STATISTICAL ANALYSIS 
 

Reliability R1 is defined as 

     
  

1Anumber of studies FSR
Total number of studies

>=          (20) 

where FSA is defined as the ratio of the uncertainty estimate and the true error E1 between 

the fine grid solution and the AB/NB solution SC: 

                                  
1

A
UFS
E

=

           

      (21) 

                                1
1

C

C

S SE
S
−=

          

      (22) 

Rsm=1-|Estimated fraction for FSA>1 – Expected fraction for FSA >1| used in [8] is 

deficient as it
  
does not discriminate estimated fractions with the same distance below or 

                                                           
1 R hereinafter not to be confused with R used before for convergence ratio 
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above the expected fraction (e.g., 91% estimated fraction inside has the same Rsm as 99% 

estimated fraction inside). 

The confidence of mean analysis is based on the methodology and procedures 

summarized in [18]. If ( )1,iX i N=  is any individual sample population/distribution, the 

sample mean of iX  is 

                                                           
1

1 N

i
i

X X
N =

= ∑
          

      (23) 

where N is the sample size. The standard deviation of the sample is defined by 

                                                  
( )2

1

1i

N

i
i

X

X X
S

N
=

−
=

−

∑

          

     (24) 

and is related to the standard deviation for the mean XS

 

by 

                                                         iX
X

S
S

N
=       (25) 

To account for the effect of small number of the sampling data, student t-

distribution is applied where the confidence interval for the mean is defined as: 

                                                       iX
X

tS
k tS

N
= =

 

     (26) 

The confidence interval of mean is that at least 95% confidence that true mean μ

is bounded by X k−  and X k+          

                       ( ) 0.95P X k X kμ− ≤ ≤ + ≥

   

  (27) 

The “outliers” for all the statistical analysis are identified using the Peirce’s 

Criterion as summarized in [19]. Compared to the Chauvenet’s criterion, Peirce’s 

criterion is more rigorous, does not make an arbitrary assumption concerning the 

rejection of data, and theoretically accounts for the case where there is more than one 

suspect data. 

The sample populations are constructed based on statistical analysis of AB and 

NB selected from 17 different studies covering 9 fluids, 5 thermal and 3 structure 

problems with additional information summarized in Table 1. The 17 studies were solved  
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Table 1. Verification studies 
 

# Case Conditions Verification variables Grids Outlier
 

AB/NB 
1 1D£ wave [6] - Wave profile 10 grids 0 AB 
2 2D Laplace [5,7] - Arbitrary function 6 grids 0 AB 
 

3 
2D driven cavity 

[20] 
Re=1000 Maximum/minimum 

Of stream-function, 
vorticity 

4 grids  
1 

 
NB [21] 

 
4 

2D natural 
convection flows in 
square cavities [22] 

Ra=104 Max. or monitored 
Velocity, location, 

temperature, and Nu 

 
5 grids 

 
2 

 
NB 

 
5 

2D natural 
convection flows in 
square cavities [22] 

Ra=105 Max. or monitored 
Velocity, location, 

temperature, and Nu 

 
6 grids 

 
1 

 
NB 

 
6 

2D natural 
convection flows in 
square cavities [22] 

Ra=106 Max. or monitored 
Velocity, location, 

temperature, and Nu 

 
7 grids 

 
0 

 
NB 

 
7 

Backward-facing 
step [23] 

Re=1.5×105 Reattachment length, 
velocity 

7 grids 1 NB  
[24, 25] 

8  2D driven cavity 
[26, 27] 

Re=100 Velocity 5 grids 0 NB 

9 2D driven cavity 
[26, 27] 

Re=1000 Velocity 5 grids 0 NB 

10 3D cubic cavity  
[26, 27] 

Re=100 Velocity 4 grids  
3 

NB 

 
11 

Axisymmetric 
turbulent flow 

through a valve  
[28, 29] 

 
Re=105 

 
Velocity, TKE, ε 

5 grids   
4 

NB 

 
12 

1D steady-state 
convection-

diffusion [11] 

Pe=1 and 
Pe=10 

Arbitrary function 6 grids  
0 

AB 

 
13 

Isothermal cylinder 
enclosed by a 
square duct  
[27, 28, 29] 

Ra=106, 
Pr=10 

Velocity, temperature 5 grids  
1 

 
NB 

 
 

14 

Premixed 
methane/air laminar 

flat flame on a 
perforated burner 

[28, 30, 31] 

Inlet 
temperature 

298.2K 

Velocities, temperature  
7 grids 

 
2 

 
NB 

 
15 

Data for “exact” 
grid convergence 

set [8] 

contrived  
- 

 
7 grids 

0  
AB 

 
16 

Bean bending 
problem for 2nd 

series [8] 

 
2nd series 

Beam bending stress, 
Beam end deflection 

7 grids with 5 
systematically 

refined 

 
3 

 
AB 

 
17 

Beam bending 
problem for 3rd 

series [8] 

 
3rd series 

Beam bending stress, 
Beam end deflection 

 
4 grids 

 

 
0 

 
AB 

   £ D stands for “dimensional” 
 
on four, five, or six refinement levels using a systematic grid refinement ratio 2 ( 2r = ) 

for different kinds of flows, using different grids and different numerical schemes. The 
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17 studies constitute 96 variables (velocity, locations max/min, temperature, turbulent 

kinetic energy, stream function, beam bending stress, and beam end deflection) of which 

either one or multiple grid convergence studies are available, which gives a total of 304 

individual monotonically converged grid studies. 304 grid studies have 304 CF values of 

which at least 5 FSA are available at 16 different CF. Details about the numerical 

schemes, solver, and boundary conditions can be found in the corresponding references. 

The statistical analysis is performed in different ways resulting in a total of 24 

different distributions. For each distribution, variables R , X ,
 XS , and XX tS−  are 

calculated. As summarized in Table 2, the 1st and 2nd distributions are for the 17 means of 

studies and the means of the 96 variables of the 17 studies, respectively. Then statistical 

analysis is conducted for different ranges of CF where an averaging process is performed 

using a tolerance ΔCF = 0.01, i.e., CF values are regarded to be the same if the difference 

between two CF values is less than 0.01. A smaller value with ΔCF = 0.001 is evaluated 

and no significant effects on the statistics are observed. After the averaging process, the 

3rd to 8th distributions are analyzed for different ranges of CF values, i.e., (0-2), (0-0.4), 

(0.4-0.9), (0.9-1.1), (1.1-1.6), and (1.6-2.0), for which the results the summarized in 

Table 3. Table 4 shows the 9th to 24th distributions that are at the 16 CF values where 

there are more than 4 monotonic converged grid studies and thus more than 4 FSA for 

each CF. The numbers of outliers for each study and the 16 CF where multiple FSA (>4) 

are available are summarized in Table 1 and Table 4, respectively. 

 

Table 2. Mean, standard deviation of the mean, and reliability excluding outliers based on      
              different studies 

Factor of safety # points Statistics GCI GCIC CF FS t 
 

Means of 
studies 

 
 

17 

X 1.61 1.72  2.27 3.25  
 

1.75 XS  0.16 0.16 0.31 0.81 

XX tS−  1.33 1.44 1.73 1.83 

R (%) 82.35 94.12 94.12 94.12 
 

Means of all 
variables of 17 

studies 

 
 

96 

X 1.63 1.73 2.24 2.74  
 

1.67 XS  0.09 0.09 0.19 0.28 

XX tS−  1.48 1.58 1.92 2.27 

R (%) 88.54 91.67 91.67 95.83 
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Table 3. Mean, standard deviation of the mean, and reliability excluding outliers based on       
      different ranges of correction factors using non-averaged factor of safety 

CF # points Statistics GCI GCIC CF FS t 
 
 

0–2 

 
 

304 

X 1.69 1.76 2.34 2.60  
 

1.65 XS  0.11 0.11 0.27 0.24 

XX tS−  1.51 1.58 1.89 2.20 

R (%) 86.18 92.11 91.45 95.72 
 
 

0–0.4 

 
27 

(8.88%) 

X 4.77 4.77 10.20 7.16  
 

1.71 XS  1.06 1.06 2.54 1.70 

XX tS−  2.96 2.96 5.86 4.25 

R (%) 96.30 96.30 100 96.30 
 
 

0.4–0.9 

 
96 

(31.58%) 

X 1.74 1.74 2.24 2.06  
 

1.67 XS  0.08 0.08 0.14 0.11 

XX tS−  1.61 1.61 2.01 1.88 

R (%) 93.75 93.75 95.83 95.83 
 
 

0.9–1.1 

 
125 

(41.11%) 

X 1.29 1.30 1.15 1.34  
 

1.98 XS  0.02 0.02 0.02 0.02 

XX tS−  1.25 1.26 1.11 1.30 

R (%) 96.0 96.0 94.4 98.4 
 
 

1.1–1.6 

 
48 

(15.79%) 

X 1.02 1.29 1.24 2.16  
 

1.68 XS  0.06 0.07 0.07 0.15 

XX tS−  0.92 1.17 1.12 1.91 

R (%) 47.92 77.08 70.83 87.5 
 
 

1.6–2.0 

 
8 

(2.63%) 

X 0.97 1.74 2.01 16.09  
 

1.90 XS  0.14 0.25 0.29 3.80 

XX tS−  0.70 1.27 1.46 8.87 

R (%) 37.5 37.5 87.5 100 
               
 

Table 4. Statistics excluding outliers at 16 different correction factors 
 

CF # points #outliers Statistics GCI GCIC CF FS t 
 
 

0.625 

 
 

4 

 
 

1 

X 1.69 1.69 2.36 2.07  
 

2.35XS  0.09 0.09 0.12 0.11 

XX tS−  1.48 1.48 2.07 1.81 

R (%) 100 100 100 100 
 
 

0.675 

 
 

9 
 

 
 

0 

X 1.90 1.90 2.51 2.27  
 

1.86XS  0.12 0.12 0.15 0.14 

XX tS−  1.69 1.69 2.23 2.02 

R (%) 100 100 100 100 
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0.745 

 
 

7 
 

 
 

2 

X 1.60 1.60 1.94 1.85  
 

1.94XS  0.058 0.058 0.070 0.067 

XX tS−  1.49 1.49 1.80 1.72 

R (%) 100 100 100 100 
 
 

0.825 

 
 

14 
 

 
 

0 

X 1.59 1.59 1.71 1.75  
 

1.77XS  0.104 0.104 0.111 0.114 

XX tS−  1.40 1.40 1.51 1.55 

R (%) 100 100 100 100 
 
 

0.865 

 
 

12 

 
 

1 

X 1.48 1.48 1.50 1.60  
 

1.80XS  0.114 0.114 0.116 0.123 

XX tS−  1.28 1.28 1.29 1.38 

R (%) 100 100 100 100 
 
 

0.895 

 
 

4 
 

 
 

1 

X 1.37 1.37 1.33 1.46  
 

2.35XS  0.015 0.015 0.019 0.018 

XX tS−  1.33 1.33 1.28 1.42 

R (%) 100 100 100 100 
 
 

0.915 

 
 

9 

 
 

1 

X 1.36 1.36 1.28 1.43  
 

1.86XS  0.102 0.102 0.096 0.107 

XX tS−  1.17 1.17 1.10 1.23 

R (%) 71.4 71.4 71.4 100 
 
 
 

0.945 

 
 

7 

 
 

1 

X 1.33 1.33 1.20 1.38  
 

1.94XS  0.007 0.007 0.006 0.007 

XX tS−  1.32 1.32 1.19 1.36 

R (%) 100 100 100 100 
 
 

0.955 

 
 

4 

 
 

1 
 

 

X 1.33 1.33 1.19 1.36  
 

2.35XS  0.003 0.003 0.002 0.003 

XX tS−  1.32 1.32 1.19 1.36 

R (%) 100 100 100 100 
 
 

0.965 

 
 

7 

 
 

1 

X 1.28 1.28 1.14 1.31  
 

1.94XS  0.006 0.006 0.006 0.006 

XX tS−  1.27 1.27 1.13 1.30 

R (%) 100 100 100 100 
 
 

0.985 

 
 

7 

 
 

1 

X 1.27 1.27 1.12 1.28  
 

1.94XS  0.013 0.013 0.011 0.013 

XX tS−  1.24 1.24 1.09 1.25 

R (%) 
 
 
 

100 100 100 100 
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1.005 

 
 

50 

 
 

5 

X 1.26 1.27 1.11 1.27  
 

1.68XS  0.025 0.025 0.022 0.025 

XX tS−  1.22 1.22 1.08 1.23 

R (%) 96 96 94 96 
 
 

1.015 

 
 

6 

 
 

0 

X 1.24 1.26 1.09 1.29  
 

2.02XS  0.008 0.008 0.007 0.010 

XX tS−  1.23 1.24 1.08 1.27 

R (%) 100 100 100 100 
 
 

1.095 

 
 

5 

 
 

0 

X 1.72 1.89 1.64 2.21  
 

2.13XS  0.17 0.19 0.16 0.22 

XX tS−  1.36 1.49 1.30 1.75 

R (%) 100 100 100 100 
 
 

1.145 

 
 

13 

 
 

1 

X 1.19 1.36 1.23 1.73  
 

1.78XS  0.11 0.12 0.11 0.15 

XX tS−  1.00 1.15 1.03 1.45 

R (%) 69.23 76.92 69.23 92.31 
 
 

1.295 

 
 

8 

 
 

2 

X 1.09 1.42 1.39 2.37  
 

1.90XS  0.05 0.06 0.06 0.11 

XX tS−  1.00 1.29 1.27 2.17 

R (%) 75 100 100 100 
 
 

Determination of the optimal values for FS0 and FS1 require iterations since 

computation of the mean, standard deviation, and k require the values of FS0 and FS1 

known as a priori. Two criteria are used to determine if the selected values are 

acceptable. The first criterion is that for the total 304 grid convergence studies at least 

95% confidence is achieved for FSA > 1, i.e.,  

   
  

95%R >                  (28) 

R is also used to estimate the performance of different verification methods for different 

studies, different regions of CF values, and at the 16 different CF values with multiple 

solutions. The 2nd criterion is that there will be at least 95% confidence that the lower 

band of the confidence interval for the mean FSA is larger than FSA,min. The appropriate 

values of FSA,min are often determined based on risks/reliability, accuracy, and cost, etc. 

and show a large variations from 1.2 to 5 for different practical applications. For 

example, 1.2 is used for new bridges and road marks, 3.0 is used for automobiles, and 3.5 
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to 4.0 are used for pressure vessels, etc. FSA,min is thus chosen to be 1.2 in this study                    

             ( )1.2 0.95P X k X kμ≤ − ≤ ≤ + ≥

  

  (29) 

It is obvious that when Eqn. (29) is satisfied 

               ( )1.2 0.95P X ≥ ≥

   

   (30) 

                          ( )1.2 0.95P μ ≥ ≥
 

  

   (31) 

When the two criteria are met, a minimum set of values are accepted. In this study, (FS0 = 

3, FS1 = 2), (FS0 = 3, FS1 = 1.5), (FS0 = 2, FS1 = 1.5) and (FS0 = 2, FS1 = 1.25) are found 

to meet the two criteria. Since the first three sets of data are too conservative (i.e, provide 

too large FSA), (FS0 = 2, FS1 = 1.25) is determined to be the recommended values, which 

are used and compared with GCI, GCIC, and CF methods for the same sample of data to 

evaluate the mean, standard deviation for the mean, lower band value for the confidence 

interval of the mean FSA, and the reliability based on different studies and different 

ranges of CF values. 

It should be noted that statistical analysis is performed based on the following 

fact. The error and uncertainty estimates are systematic, but since the real error E1 is 

random, the ratio between them (i.e., FSA) is randomly distributed. In other words, it is 

assumed that there are no correlated biased errors between different studies. Since FSA is 

randomly distributed, the confidence interval for the mean reveals how close X  is to μ 

for FSA.  

 
V. ANALYTICAL AND NUMERICAL BENCHMARK DATA 

 
All the 17 studies summarized in Table 1 used the same grid refinement ratio 2 to 

generate the grids systematically. For each study, solutions on multiple grids are 

extracted and convergence studies are performed for each variable. Only monotonically 

converged grid studies with 0 < CF < 2 are used, which constitute about 90% of all the 

grid convergence studies. The other 10% with oscillatory convergence, monotonic 

divergence, and oscillatory divergence are discarded. pRE, δRE, and SC are evaluated using 

Eqns. (4), (5), and (6), respectively.  
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For each study, two types of figures are plotted and analyzed. To investigate the 

convergence characteristics of each variable, |U|, actual error |E1|, and CF are graphed 

versus the ratio of grid spacing Δx/Δxfinest. Additionally, FSA is plotted versus CF to show 

the actual behavior of each method for different ranges of CF values, which enables the 

evaluation of different methods on whether the uncertainty estimate bound the true error 

(|U| >|E1|). Details of these figures and discussions are presented in Appendix 1. 

 37 of the 96 variables only have two grid triplet studies, which prohibit studies of 

the convergence characteristics of those variables. However, the errors do show 

decreasing values when the grids are refined. Of the remaining 59 variables that have 

multiple grid triplet studies, ideal convergence is only achieved for 6 of the variables 

such as the one-dimensional wave equation, i.e., errors predicted by the four methods 

monotonically decrease continuously as the solutions are approaching the AR when grids 

are refined. The other variables oscillatorially approach the AR when the grids are 

refined. FSA of all variables for each study are also examined for different CF values, 

which will be discussed in more details in the next section. 

 

VI. STATISTICAL ANALYSIS RESULTS 
 

Figure 2 shows the FSA without averaging and without excluding outliers using 

the four different methods for the total 304 verification studies. There are some cases at 

CF around 0.5, 0.65, 0.8, 1, and 1.4 that none of the methods achieves FSA > 1. As shown 

later, some of these points are outliers but the rest of them are not. Compared to the CF 

method, GCI predicts a lower and higher FSA near CF = 0 and CF = 1, respectively, 

which is consistent with the theoretical FS distribution shown in Figure 1. Compared to 

GCI, GCIC predicts a little higher FSA for CF > 1 but still not high enough to bound most 

of the errors. Both GCI and the CF methods do not provide sufficient large FSA for CF > 

1, which is corrected by the FS method as it shows a nearly “symmetric” distribution of 

FSA respect to CF = 1. 

Figure 3 shows FSA with/without averaging using ΔCF = 0.01 and XX tS±  for 

CF where at least four FSA are available excluding outliers using the four methods. At the 

CF where multiple FSA are available, the number of sampled data from left to right: 4, 9, 
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7, 14, 12, 4, 9, 7, 4, 7, 7, 50, 6, 5, 13, 8 points. It is observed that the averaging itself only 

helps to remove a few “unbounded” points but still cannot drag all the FSA to be larger 

than 1 for all the methods. For XX tS− , GCI has FSA < 1 for most CF > 1. GCIC 

increases the FSA magnitude for CF > 1 but still not large enough to be greater than 1.2 

for all CF where multiple FSA are available. Compared to GCI and GCIC, CF predicts 

lower FS near CF = 1 and similar magnitude of FS for CF > 1. Only the FS method 

bounds the largest fraction of the error and provides a minimum FSA > 1.2 for all CF 

where multiple FSA are available. 

 

          
                                          (a)                                                                (b) 

 
                                                             (c)                                                                                                
Figure 2 Actual factor of safety without averaging and without excluding outliers:      
              (a) GCI and GCIC, (b) CF method, (c) FS method. 
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                              (a)                                                                (b) 

 

                          
                             (c)                                                               (d) 

Figure 3 Actual factor of safety with/without averaging using ΔCF = 0.01 and XX tS±     
               for CF where multiple FSA are available (number of sampled data from left to  
               right: 4, 9, 7, 14, 12, 4, 9, 7, 4, 7, 7, 50, 6, 5, 13, 8 points, respectively)   
               excluding outliers: (a) GCI, (b) GCIC, (c) CF method, (d) FS method. 

 

 Figure 4 shows the standard deviation based on the mean (
iXS X ) for the 

different methods excluding outliers at the 16 CF where multiple FSA are available. 

iXS X  is the same for different methods as dividing by the mean cancels the different 

factors of safety used in the formula. Overall 
iXS X  shows strong oscillations with 

magnitude decreasing when approaching the AR. This is consistent with the facts that 
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larger number of verification studies are available close to the AR than those far away 

from AR, which will lead to smaller 
iXS . 

 
Figure 4 Standard deviation based on mean for different methods excluding outliers at the     
               16 CF where multiple FSA are available. 
 

Tables 2 and 3 show the statistics for the four methods, either based on different 

studies and variables (Table 2) or based on different ranges of CF values (Table 3). The 

outliers have been removed. Based on 17 studies, none of the methods achieves 95% (R > 

95%) likely due to the small population number. GCI has the smallest R = 82.4% while 

the other three methods have higher R = 94.1%. X  of FSA for the 17 studies are 

increasing from 1.61 for GCI to 3.25 for FS. XS  is increasing from 0.16 for GCI to 0.81 

for FS method. Based on all 96 variables considered, only the FS method has R > 95% 

while R for other methods are: R (GCI) < R (GCIC) = R (CF) < R (FS). Compared to 

values using 17 studies, GCI, GCIC, and CF methods show no significant changes of X  

but significant lower XS . X and XS  of the FS method decrease to 2.74 and 0.28, 

respectively. For all four methods, 1.2XX tS− >  is met based on either the 17 studies or 96 

variables.  

FSA presented in Table 2 based on different studies and variables show larger 

mean FSA of FS method than any other method. This may be misleading as it seems that 

the higher reliability using the FS method is due to the larger FS. In fact, statistical 

analysis using different studies involves averaging of different verification studies that 

have 0 2CF< < . This will increase the overall mean significantly as the FS far away 

from the AR is much larger than FS close to the AR for the CF and FS methods. To 
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illustrate the distribution of FSA and evaluate the effectiveness of different methods in 

different ranges of CF, Table 3 shows statistics for different ranges of CF using non-

averaged FSA excluding outliers. For the whole range of CF (0-2): only FS has R > 95% 

with R = 86.2% for GCI, R = 92.1% for GCIC, 91.5% for CF, and 95.7% for FS methods. 

For 0 < CF < 0.9, all methods show R > 93%. However for 18% of the data (CF = 1.1-

2.0), only 47.4%, 71.2%, 72.9% confidence interval can be achieved for GCI, GCIC, and 

FS, respectively, while R = 89.3% for the FS method. For the range of CF (0-2), all the 

methods meet 1.2XX tS− > . However, when the CF (0-2) is broken into different ranges, 

only FS method always satisfies 1.2XX tS− > . For GCI, GCIC, and CF methods, CF 

ranges where 1.2XX tS− <  are (1.1-2.0) for GCI, (1.1-1.6) for GCIC, and (0.9-1.6) for the 

CF method. This puts a very high risk of using the three methods on practical 

applications since many verification studies for complex geometries and high Reynolds 

number flows often approach the AR oscillatorially with the different sets of grids, which 

has been demonstrated in many previous simulations in CFD workshops and an example 

for ship hydrodynamics as provided in the next section. It should be also noted that 

different choices of ranges of CF values, for example 0-0.4, 0-0.8, 0.8-1.2, 1.2-1.6, and 

1.6-2.0, only cause minor changes of the fraction bounded and the conclusions drawn 

above are general. 

Table 4 additionally provides statistics for the 16 CF where at least 4 FSA are 

available after removing the outliers. For the 11 CF that are less than 1, all methods have 

R = 100%. Near the AR where CF = 1.005, GCI, GCIC, and FS have the same reliability 

R = 96%, which is larger than R = 94% for the CF method. For CF close to the AR but 

larger than 1 (CF = 1.015 and 1.095), R = 100% for all methods. However, at CF = 1.145, 

only R = 69.23% is achieved for GCI and CF methods, R = 76.92% for GCIC method, but 

with 92.31% for the FS method. When solutions are far away from the asymptotic range 

(CF = 1.295), GCI only provides R = 75% while the other three methods can achieve R = 

100%. When CF < 1, the mean FSA X  is the same for the GCI and GCIC methods. For 

CF = 0.625, 0.675, and 0.745,  ( ) ( ) ( ) ( )CX GCI X GCI X FS X CF= < < . For CF = 0.825 

and 0.865,  ( ) ( ) ( ) ( )CX GCI X GCI X CF X FS= < < . For CF = 0.895, 0.915, 0.945, 0.955, 

0.965, and 0.985,  ( ) ( ) ( ) ( )CX CF X GCI X GCI X FS< = < . For CF = 1.005, 1.015, and 
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1.095, ( ) ( ) ( ) ( )CX CF X GCI X GCI X FS< < ≤ . For CF = 1.145 and 1.295, 

( ) ( ) ( ) ( )CX GCI X CF X GCI X FS< < < . The different magnitudes of X  follow the 

theoretical values of FS at different CF as shown in Figure 1. Since a larger FS will result 

in a larger standard deviation, the 
XS  follow the correlations above for X  at the same CF. 

FS is the only method that satisfies 1.2XX tS− >  at all the 16 CF.  1.2XX tS− >  is 

observed for GCI at CF = 0.915, 1.145, and 1.295; for GCIC at CF = 0.915, and 1.145; 

and for CF at CF = 0.915, 0.945, 0.955, 0.965, 0.985, 1.005, 1.015 and 1.145. This 

indicates that the GCI and GCIC don’t have sufficient FS far away from the asymptotic 

range for CF > 1, whereas CF method does not provide enough FS close to the AR. 

 

VII. EXAMPLE FOR SHIP HYDRODYNAMICS APPLICATIONS 
 

To evaluate the behaviors of the four methods for practical applications, they are 

applied for a recent study [32] that used computational towing tank procedures for single 

run curves of resistance and propulsion for the high-speed transom ship Athena barehull 

with a skeg using the general-purpose solver CFDShip-Iowa-V.4 [33]. In this study, Xing 

et al. investigated the issue of achieving the AR by continuously refining the grid from 

the coarsest grid (grid 7 with 360,528 points) to the finest grid (grid 1 with 8.1 million 

points) for the Athena bare hull with skeg with 2 degrees of freedom (pitch and heave) at 

Froude number (Fr) 0.48. The grids are designed with a systematic grid refinement ratio 
0.252r = , which allows 9 sets of grids for verification and validation (V&V) with 5 sets 

with 0.252r =  (5, 6, 7; 4, 5, 6; 3, 4, 5; 2, 3, 4; and 1, 2, 3), 3 sets with 0.52r = (3, 5, 7; 2, 4, 

6; and 1, 3, 5), and 1 set with 0.752r = (1,4,7). The distribution of iterative errors 

0.1 0.3fine I fineS U S≤ ≤  for grids 1 to 7 is shown in Figure 5(b) and 5(d) for resistance 

coefficients and motions, respectively. IU  is of the same order of magnitude for all the 

grids, which suggests that it is mainly determined by the iterative method applied and 

independent of grid resolutions. As shown in Table 5, TXC  monotonically converges for 

grids (2, 4, 6), (1, 3, 5), (4, 5, 6), (3, 4, 5), (2, 3, 4), and (1, 2, 3), of which grids (1, 2, 3) 

have the smallest grid uncertainty and grids (3, 4, 5) are closest to the AR based on CF 

closest to one. TXC  oscillatorially diverges on grids (5, 6, 7), and monotonically diverges 
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on grids (3, 5, 7) and (1, 4, 7). All the diverged solutions involve the coarsest grid 7, 

which is likely due to the insufficient resolution of the coarsest grid 7. As shown in 

Figure 5(a), TXC  for grid 7 does not follow the trend as shown for grids 6-1. Figure 5(a) 

also shows frictional and pressure resistance coefficients CfX and CPX on all the grids. 

Figure 5(b) shows the magnitudes of the relative changes of solutions Nε  between two 

successive grids with respect to the solutions on the finest grid 1. When grids are refined 

from 5 to 1, Nε  systematically decreases for TXC  and fXC  while oscillatory decreases for 

PXC . GU  for grids (4, 5, 6) is unreasonable large as it is too far away from the AR. UG 

for grid studies (2, 3, 4) and (1, 2, 3) using GCI, GCIC, and CF are unreasonable small 

due to 

Table 5. Verification study for CTX of Athena bare hull with skeg (Fr=0.48)♣. 
Grids r RG  PG CF UG (%)

GCI GCIC CF  FS 

2, 4, 6 2
0.5  0.63 1.32 0.58 3.34 3.34 4.90 4.17 

1, 3, 5  2
0.5 0.40 2.66 1.51 0.72 1.09 1.16  2.90 

4, 5, 6  2
0.25 0.97 0.16 0.07 52.7 52.7 125.2 85.2 

3, 4, 5 2
0.25 0.80 1.27 0.59 4.98 4.98 7.23 6.20 

2, 3, 4 2
0.25 0.60 2.98 1.64 1.07 1.75 1.95  6.64 

1, 2, 3  2
0.25 0.50 4.00 2.42 0.58 1.40 1.11 -  

        ♣UG is %Sfine; CTX is based on static wetted area; 
 

Table 6. Verification study for motions of Athena bare hull with skeg (Fr=0.48)* 
Parameter Grids r RG PG CF UG (%)  

GCI GCIC  CF  FS 
Sinkage 1, 3, 5  2

0.5 0.31 3.4 2.25 0.64 1.44  1.8  - 

Sinkage 2, 3, 4  2
0.25

  0.13 12 16.92 0.05 0.88  1.37  - 

Trim 1, 3, 5  2
0.5 0.48 2.13 1.09 4.12 4.49  3.89  5.21 

Trim 4, 5, 6  2
0.25

  0.86 0.89 0.40 24.42 24.42  42.87  33.17 

Trim 2, 3, 4  2
0.25

  0.53 3.69 2.16 3.35 7.25  8.92  - 

Trim 1, 2, 3  2
0.25

  0.53 3.71 2.18 1.73 3.77  4.64  - 

*UG is %Sfine 
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                                           (a)                                                        (b)   
 

        
        (c)                                                        (d) 

 
Figure 5. Verification for resistance and motions for Athena bare hull with skeg  
                (Fr=0.48): (a) resistance coefficients, (b) relative change ( )1 1 100N N NS S Sε −= − ×   
                and iterative errors for resistance coefficients, (c) sinkage and trim, (d) relative  
                change εN and iterative errors for sinkage and trim. 
 

the deficiency discussed before while UG of the FS method for these two studies are more 

reasonable on (2, 3, 4) but unfortunately invalid for (1, 2, 3) due to CF > 2 caused by the 

contamination of the iterative error on the fine grid. As shown by Figure 5(b), separating 

iterative errors from grid uncertainties is problematic for the finer grids since iterative 

and grid uncertainties are of the same order of magnitude. Implementation of more 

accurate and efficient iterative methods to speed up the convergence (e.g., multigrid) will 

be necessary. However, εN of the current study does show systematic decreasing for CTX 

and CfX and oscillatory decreasing for CPX. CTX, CfX, and CPX show different rates of 
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approaching the AR. Table 6 shows that motions are more difficult to converge than 

resistance coefficients. Monotonic converged solutions are achieved only for trim on 

grids (1, 3, 5) and (4, 5, 6). For trim on grids (1, 3, 5), FS method again predicts more 

reasonable UG than the other three methods. For trim on grids (4, 5, 6), FS method also 

predicts larger UG than GCI and GCIC methods but lower UG than the CF method that 

seems to be too conservative at CF = 0.4. 

 

VIII. CONCLUSIONS 
 

A factor of safety method for quantitative estimates of grid and time-step 

convergence uncertainties for CFD solutions is derived to remove the two deficiencies of 

using GCI, GCIC, and CF methods, i.e., unreasonably small uncertainty when CF > 1 and 

lack of statistical analysis to prove 95% confidence for the estimated uncertainties to 

bound the true error. The approach follows the CF method but by reflecting uncertainty 

instead of FS for CF < 1 for CF > 1 with respect to the AR (CF = 1). Additionally, the FS 

method provides flexibility for factors of safety at CF = 0 and CF = 1, which are 

determined by the overall reliability of the method and lower band of the confidence 

interval of the true mean based on statistical analysis. The statistical analysis is based on 

a large sample of AB and NB covering 17 studies with 96 variables and 304 individual 

grid triplet studies, as well as one practical application in ship hydrodynamics. Results 

showed that FS method is the only one that provides at least 95% confidence that the 

uncertainty estimate will bound the true error (FSA > 1) for the 304 grid convergence 

studies, i.e., confidence intervals are 86.2%, 92.1%, 91.5%, and 95.7% for the GCI, 

GCIC, CF, and the FS methods, respectively. For 20% of the selected data when 1.1 ≤ CF 

< 2.0, GCI, GCIC, and CF fail as only 47.4%, 71.2%, 72.9% confidence interval can be 

achieved for them, respectively, while 89.3% is achieved for the FS method. The FS 

method is also the only one that has at least 95% confidence the lower band of the 

confidence interval for the true mean FSA is larger than 1.2 for different studies, different 

variables, different ranges of CF, and different single CF values where multiple FSA 
are 

available. 

Although a large sample of populations with either analytical or numerical 

benchmark data have been used, additional rigorous verification studies (AB/NB or 
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industrial applications) are needed to further validate the recommended FS0 and FS1, 

especially those demonstrating that the AR is achieved when grids are refined.  This has 

two benefits: (1) reduced 
iXS and thus k, which will likely provide a “converged curve” 

for the factor of safety for different CF; (2) enabled Chi-square analysis for evaluation of 

confidence interval for XS . Further evaluation of the LSM is needed especially using 

statistical analysis tools in this study. There are other unresolved issues and complex 

factors such as mixed numerical schemes, coupled numerical and modeling errors for 

large eddy simulation and detached eddy simulation and single-grid estimator. Even 

though only a small fraction (5.6%) of data is outliers, it is worthy investigating why.  
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Appendix 1. Analytical and Numerical Benchmarks 

 

Study 1 One-Dimensional Wave Equation 

 

As shown in Figure A1, with the refinements of the grids, the errors monotonically 

decrease and solutions approach the AR as CF changes from CF = 0.4 on the coarsest 

grid to CF = 1 on the finest grid. FSA for GCI and GCIC are the same as CF < 1 and 

smaller than that predicted by the FS method except at CF = 1 where FSA using the three 

methods are the same. FSA for GCI and GCIC are smaller and larger than those predicted 

by the CF method for CF < 0.875 and 0.875 < CF < 1, respectively. FSA of the FS 

method are smaller and larger than those predicted by the CF method for CF < 0.8 and 

0.8 < CF < 1, respectively. These observations are consistent with the FS shown in Figure 

1.  The average FSA are 1.44, 1.44, 1.61, and 1.60 for GCI, GCIC, CF, and FS methods, 

respectively. The standard deviations of FSA are 0.27, 0.27, 0.78, and 0.49 for GCI, 

GCIC, CF, and FS methods, respectively. 

 

Study 2 Two-Dimensional Laplace Equation 

 

As shown in Figure A2, with the refinements of the grids, the errors monotonically 

decrease. Solutions approach the AR (CF = 1) monotonically for constant Dirichlet 

boundary conditions and oscillatorially for non-constant value Dirichlet boundary 

conditions. Comparison of FSA magnitudes for different methods shows similar trend as 

discussed in study 1 and shown in Figure 1. The average FSA are 1.30, 1.31, 1.23, and 

1.38 for GCI, GCIC, CF, and FS methods, respectively. The standard deviations of FSA 

are 0.04, 0.04, 0.09, and 0.07 for GCI, GCIC, CF, and FS methods, respectively. 

 

Study 3 Two-Dimensional Driven Cavity (Re=1,000) 

 

As shown in Figure A3, only two sets of grid study are available and thus it is difficult to 

draw any conclusions on the convergence characteristics when the grids are refined. 
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However, CF is closer to 1 and errors decrease with the refinements of the grids. One 

exception is for the minimum stream function using the BS scheme, which shows a larger 

Ug on the finer grid. Comparison of FSA magnitudes for different methods shows similar 

trend as shown in Figure 1. All verification methods except the FS method predict FSA < 

1 for CF > 1. The average FSA are 1.12, 1.16, 1.23, and 1.58 for GCI, GCIC, CF, and FS 

methods, respectively. The standard deviations of FSA are 0.41, 0.37, 0.51, and 0.62 for 

GCI, GCIC, CF, and FS methods, respectively. 

 

Study 4 Two-Dimensional Natural Convection Flows in Square Cavities (Ra=104) 

 

As shown in Figure A4, all variables have 3 grid-triplet studies except Umon that has only 

two grid-triplet study. When grids are refined, all errors monotonically decrease and all 

variable solutions either linearly or oscillatorially approach the AR (CF = 1). Comparison 

of FSA magnitudes for different methods shows similar trend as shown in Figure 1. FSA 

oscillatorially decrease when CF is approaching the AR from CF < 1. For CF > 1, GCIC 

predicted higher FSA than GCI and CF methods. For CF > 1.16, uncertainty estimates 

using GCI do not bound the true error (FSA < 1) and GCIC and CF have similar 

magnitudes of FSA around 1.4 while the FS method has much larger FSA. The average 

FSA are 1.49, 1.55, 1.75, and 1.90 for GCI, GCIC, CF, and FS methods, respectively. The 

standard deviations of FSA are 0.26, 0.25, 0.68, and 0.45 for GCI, GCIC, CF, and FS 

methods, respectively. 

 

Study 5 Two-Dimensional Natural Convection Flows in Square Cavities (Ra=105) 

 

As shown in Figure A5, all variables have 4 grid-triplet studies. When the grids are 

refined, all errors monotonically decrease except the two coarsest sets of grids for Umax 

and all variable solutions either monotonically or oscillatorially approach the AR. Similar 

to the previous studies, uncertainty estimates using GCI, GCIC, and CF methods do not 

bound the true error for some points at CF > 1 (FSA < 1) while the FS method always 

bounds the true error (FSA < 1). The average FSA are 1.84, 1.96, 2.64, and 2.74 for GCI, 
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GCIC, CF, and FS methods, respectively. The standard deviations of FSA are 0.74, 0.73, 

1.77, and 1.48 for GCI, GCIC, CF, and FS methods, respectively. 

 

Study 6 Two-Dimensional Natural Convection Flows in Square Cavities (Ra=106) 

 

As shown in Figure A6, the number of grid-triplet studies is 5 for all variables except 4 

for Umax and Numax and 2 for Vmax. When the grids are refined, all errors monotonically 

decrease and all variable solutions either monotonically or oscillatorially approach the 

AR. Similar to the previous studies, GCI, GCIC, and CF methods do not bound the true 

error for some points at CF > 1 while the FS method always bounds the true error. The 

average FSA are 1.47, 1.53, 1.91, and 1.89 for GCI, GCIC, CF, and FS methods, 

respectively. The standard deviations of FSA are 0.40, 0.40, 0.99, and 0.64 for GCI, 

GCIC, CF, and FS methods, respectively. 

 

Study 7 Two-Dimensional Backward-Facing Step 

 

As shown in Figure A7, with the refinement of the grids, the errors oscillatorially 

decrease with several orders of magnitude larger than those in other studies and solutions 

approach the AR with huge oscillations of CF. This suggests that the grids are still far 

from the AR for such a high Reynolds number flows. When CF > 1.4, GCI does not 

bound the true error while all other methods bounded the true error with FSA predicted by 

the FS method is the largest. The average FSA are 0.92, 1.39, 1.49, and 15.08 for GCI, 

GCIC, CF, and FS methods, respectively. The standard deviations of FSA are 0.33, 0.15, 

0.22, and 19.12 for GCI, GCIC, CF, and FS methods, respectively. 

 

Study 8 Square Cavity with Moving Top Wall (Re=100) 

 

As shown in Figure A8, 4 variables only have two grid-triplet studies and 3 variables 

have 3 grid-triplet studies, which suggests that further refinement of the grids are 

necessary. However, all variable errors linearly decrease when the grids are refined. 

When CF ≥ 1.4, all methods except GCI predict enough uncertainty estimates to bound 
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the true errors. The average FSA are 1.56, 1.96, 2.20, and 6.27 for GCI, GCIC, CF, and FS 

methods, respectively. The standard deviations of FSA are 0.48, 0.45, 0.78, and 6.38 for 

GCI, GCIC, CF, and FS methods, respectively. 

 

Study 9 Square Cavity with Moving Top Wall (Re=1,000) 

 

As shown in Figure A9, all variables only show monotonic convergence on two grid-

triplet studies except 3 grid studies for the x velocity using UDS at 0 degree. When the 

grids are refined, errors for UDS-x velocity-0 degree oscillatorially decrease while errors 

for all other variables linearly decrease. When CF = 1 and 1.15, all methods fail to bound 

the true error except the FS method. The average FSA are 2.42, 2.46, 4.12, and 3.32 for 

GCI, GCIC, CF, and FS methods, respectively. The standard deviations of FSA are 1.55, 

1.52, 3.72, and 2.41 for GCI, GCIC, CF, and FS methods, respectively. 

 

Study 10 Cubic Cavity with Moving Top Wall (Re=100) 

 

As shown in Figure A10, only two grid-triplet studies are available. However, all errors 

linearly decrease when the grids are refined. Uncertainty estimates predicted by all 

methods bound the true errors. The average FSA are 2.76, 2.90, 3.93, and 4.10 for GCI, 

GCIC, CF, and FS methods, respectively. The standard deviations of FSA are 1.43, 1.28, 

2.72, and 1.61 for GCI, GCIC, CF, and FS methods, respectively. 

 

Study 11 Axisymmetric Turbulent Flow through a Valve 

 

As shown in Figure A11, similar to study 10, only two grid-triplet studies are available 

and thus no conclusive behavior of the variables to approach the AR can be drawn. 

However, all errors linearly decrease when the grids are refined. Uncertainty estimates 

predicted by all methods bound the true errors. The average FSA are 3.22, 3.22, 5.89, and 

4.46 for GCI, GCIC, CF, and FS methods, respectively. The standard deviations of FSA 

are 2.58, 2.58, 5.14, and 3.73 for GCI, GCIC, CF, and FS methods, respectively. 
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Study 12 One-Dimensional Steady-State Convection-Diffusion Process without 

Source Term 

 

As shown in Figure A12, all variables have four grid-triplet studies. When the grids are 

refined, errors for all variables decrease and solutions are approaching the AR. 

Uncertainty estimates of all methods bound the true errors except at CF = 0.91 where 

only the FS method bound the true error. The average FSA are 1.50, 1.51, 1.51, and 1.63 

for GCI, GCIC, CF, and FS methods, respectively. The standard deviations of FSA are 

0.35, 0.34, 0.41, and 0.38 for GCI, GCIC, CF, and FS methods, respectively. 

 

Study 13 Heat Transfer from Isothermal Cylinder Enclosed by a Square Duct 

 

As shown in Figure A13, only two grid-triplet studies are available for all the variables 

except 3 grid-triplet studies for the UDS-temperature. When the grids are refined, all 

errors linearly decrease except the uncertainty estimates using GCI, GCIC, and CF 

methods for temperature with the SMART scheme increase. When 1.2 < CF < 1.4, 

uncertainty estimates predicted by all the methods do not bound the true errors except the 

FS method. The average FSA are 1.39, 1.63, 1.65, and 2.50 for GCI, GCIC, CF, and FS 

methods, respectively. The standard deviations of FSA are 0.47, 0.47, 0.33, and 0.81 for 

GCI, GCIC, CF, and FS methods, respectively. 

 

Study 14 Premixed Methane/Air Laminar Flat Flame on a Perforated Burner 

 

As shown in Figure A14, there are 5 and 4 grid-triplet studies for UDS and SMART 

methods, respectively. When the grids are refined, errors for most variables continuously 

decrease, solutions using the UDS method approach the AR either linearly or 

oscillatorially, and solutions using the SMART method show oscillations far away from 

the AR. For CF close to 1, GCI, GCIC and CF predict FSA around 1. For CF > 1, FSA 

predicted by the three methods show large oscillations of which some values are below 1. 

The FS method always provides sufficient large FSA. However, there is one grid-triplet 

study at CF = 0.51 where none of the methods can bound it. The reason behind this is 



35 
 

unknown. The average FSA are 1.63, 1.66, 2.13, and 2.25 for GCI, GCIC, CF, and FS 

methods, respectively. The standard deviations of FSA are 0.35, 0.35, 0.87, and 1.02 for 

GCI, GCIC, CF, and FS methods, respectively. 

 

Study 15 Data for “Exact” Grid Convergence Set 

 

As shown in Figure A15, solutions for the “exact” grid convergence study are always in 

the AR when there is no perturbation or with perturbation #4. Other cases only have two 

grid-triplet studies. Overall errors decrease when the grids are refined. For CF > 1 when 

solutions are far away from the AR, FSA for the FS method increases while FSA for other 

methods decrease. The average FSA are 1.79, 1.81, 2.24, and 2.18 for GCI, GCIC, CF, and 

FS methods, respectively. The standard deviations of FSA are 0.85, 0.88, 1.76, and 1.44 

for GCI, GCIC, CF, and FS methods, respectively. 

 

Study 16 Beam Bending Problem for 2nd Series on Grid Convergence 

 

As shown in Figure A16, there are 3 grid-triplet studies for the three codes investigated. 

When the grids are refined, both the errors and the correction factors show oscillations. 

Uncertainty estimates predicted by all methods fail to bound the true errors when 0.6 < 

CF < 1.2. The average FSA are 0.59, 0.64, 1.00, and 0.96 for GCI, GCIC, CF, and FS 

methods, respectively. The standard deviations of FSA are 0.068, 0.061, 0.228, and 0.095 

for GCI, GCIC, CF, and FS methods, respectively. 

 

Study 17 Beam Bending Problem for 3rd Series on Grid Convergence 

 

As shown in Figure A17, there are only two grid-triplet studies for the three codes 

investigated. When the grids are refined, the errors decrease. Uncertainty estimates 

predicted by all methods fail to bound the true errors when CF > 1.3. The average FSA 

are 0.97, 1.03, 1.69, and 1.52 for GCI, GCIC, CF, and FS methods, respectively. The 

standard deviations of FSA are 0.58, 0.52, 1.31, and 0.68 for GCI, GCIC, CF, and FS 

methods, respectively. 
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(a)                                                                    (b)  

Figure A1: 1D Wave Equation [6]: (a) error, uncertainties, and correction factor,  
                   (b) actual factor of safety 
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(a)                                                                  (b)           

    

               
                                      (c)                                                                (d)                                                   

 
Figure A2: 2D Laplace Equation [5,7]: (a) non-constant value Dirichlet boundary     
                  conditions (Eca and Hoekstra, 2000), (b) non-constant value Dirichlet 
                  boundary conditions (Iowa recalculated), (c) constant value Dirichlet  
                  boundary conditions (Iowa calculation), (d) actual factor of safety. 
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                                     (a)                                                                (b) 

   
                                       (c)                                                                     (d) 

   
                              (e)                                                                  (f) 

 
 
 
 



39 
 

             
                                         (g)                                                                  (h)                                                

 
Figure A3: 2D Driven Cavity [20, 21]: (a) maximum stream function using BS scheme,  
                  (b) maximum stream function using upwind 3 scheme, (c) maximum stream  
                  function Kawamura scheme, (d) maximum vorticity using BS scheme,  
                  (e) maximum vorticity using upwind-3 scheme, (f) maximum vorticity using  
                  Kawamura scheme, (g) minimum stream function using BS scheme, (h) actual  
                  factor of safety. 
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(a) (b)     

         
                                            (c)                                                                (d) 

                 
                                      (e)                                                                 (f) 
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                                     (g)                                                                       (h)   
 
Figure A4: 2D Natural Convection Flows in Square Cavities at Ra=104 [22]: (a) Umon,  
                   (b) Vmon, (c) Tmon, (d) Umax, (e) Vmax, (f) Numax, (g) Nu, (h) actual factor of      
                    safety. 
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(a)                                                                    (b) 

        
                                    (c)                                                                  (d) 

        
                                           (e)                                                                       (f) 

 
Figure A5: 2D Natural Convection Flows in Square Cavities at Ra=105 [22]: (a) Umon,  
                   (b) Vmon, (c) Tmon, (d) Umax, (e) Nu, (f) actual factor of safety. 
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                                (a)                                                                  (b)                        

            
                                 (c)                                                                  (d) 

             
                                    (e)                                                                    (f) 
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                                          (g)                                                                  (h)    
 
Figure A6: 2D Natural Convection Flows in Square Cavities at Ra=106 [22]: (a) Umon,  
                  (b) Vmon, (c) Tmon, (d) Umax, (e) Vmax, (f) Numax, (g) Nu, (h) actual factor of   
                  safety. 
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                                   (a)                                                                     (b)   
 
Figure A7: 2D Backward-facing Step at Re=1.5×105 [23, 24, 25]: (a) error, uncertainties,  
                   and correction factor, (b) actual factor of safety 
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                                     (a)                                                              (b) 

              
                                    (c)                                                                (d)                  

             
                                    (e)                                                                   (f) 
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                                       (g)                                                                (h)      

 
Figure A8: Square cavity with moving top wall, Re=100 [26, 27]: (a) UDS-x velocity-0  
                   deg; (b) UDS-x velocity-60 deg; (c) UDS-y velocity-0 deg; (d) SMART-x  
                   velocity-0 deg; (e) SMART-x velocity-60 deg; (f) SMART-y velocity-0 deg;  
                   (g) SMART-y velocity-60 deg; (h) actual factor of safety. 
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                                    (a)                                                                (b)  
 

            
                         (c)                                                          (d) 
 

            
                                     (e)                                                                (f) 
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                      (g)                                               (h) 
 
 

 
       (i) 
 

Figure A9: Square cavity with moving top wall at Re=1000 [26, 27]: (a) UDS-x velocity- 
                   0 deg; (b) UDS-x velocity-60 deg; (c) UDS-y velocity-0 deg; (d) UDS-y  
                   velocity-60 deg; (e) SMART-x velocity-0 deg; (f) SMART-x velocity-60 deg;  
                   (g) SMART-y velocity-0 deg; (h) SMART-y velocity-60 deg; (i) actual factor  
                   of safety. 
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                                            (a)                                                                  (b) 

 

          
                         (c)                                                                (d)          

 
Figure A10: Cubic cavity with moving top wall, Re=100 [26, 27]: (a) x-velocity-UDS;  
                     (b) y-velocity-UDS; (c) z-velocity-UDS, (d) actual factor of safety. 
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                                 (a)                                                                 (b) 

            
                           (c)                                   (d)          

                        
                                                                  (e)  
Figure A11: Axisymmetric turbulent flow through a valve [28, 29]: (a) TKE-PLDS;  
                     (b) dissipation rate of TKE-PLDS; (c) radial-velocity-SMART; (d) axial- 
                     velocity-SMART; (e) actual factor of safety. 
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                     (a)                                       (b) 

               
                       (c)                                                                     (d) 

 
                                         (e)   

Figure A12: One-dimensional steady-state convection-diffusion process without source  
                     term, with constant transport properties and with Dirichlet boundary  
                     conditions, Pe=1 and Pe=10 [11]: (a) UDS-Pe=1, (b) UDS-Pe=10,  
                     (c) SMART-Pe=1, (d) SMART-Pe=10, (e) actual factor of safety. 
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                                    (a)                                                                (b)                                              

      
                                   (c)                                                                   (d)   

             
               (e)                                                                 (f)       

 
Figure A13: Heat transfer from an isothermal cylinder enclosed by a square duct [27, 28,  
                     29]: (a) UDS-y-velocity, (b) UDS-temperature, (c) SMART-x-velocity,  
                     (d) SMART-y-velocity, (e) SMART-temperature, (f) actual factor of safety. 
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                          (a)                                                             (b)    
                                            

           
                          (c)                                                              (d)      
 

            
                        (e)                                                                (f) 
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                                     (g)                           (h)   
 

                                             
                          (i)                                                                (j) 

            
                          (k)                                                              (l) 
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                                   (m)                                     (n)                                                  

 

   
                                                              (o) 

 
Figure A14: Premixed methane/air laminar flat flame on a perforated burner [28, 30, 31]:  
                     (a) UDS-radial-velocity, (b) UDS-axial-velocity, (c) UDS-temperature,  
                     (d) UDS-CH4, (e) UDS-O2, (f) UDS-CO2, (g) UDS-H2O, (h) SMART- 
                     radial-velocity, (i) SMART-axial-velocity, (j) SMART-temperature,  
                     (k) SMART-CH4, (l) SMART-O2, (m) SMART-CO2, (n) SMART-H2O,  
                     (o) actual factor of safety. 
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                          (a)                                                                    (b) 
 

        
                           (c)                                                                      (d) 

 
      (e) 

 
Figure A15: Data for “exact” grid convergence set [8]: (a) exact to F=600, (b) perturbed  
                     #3, (c) perturbed #4, (d) all±5, (e) actual factor of safety. 
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                                     (a)                                                                  (b)    
 

         
                               (c)                                                                   (d)  
 
Figure A16: Beam bending problem for 2nd series on grid convergence [8]: (a) beam  
                     bending stress (Code 1), (b) beam bending stress (Code X), (c) beam  
                     bending stress (Code W), (d) actual factor of safety. 
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                (a)                                                                  (b)                                             

                  
                             (c)                                                                   (d) 

 
                                                                                        (e)                      
 
Figure A17: Beam bending problem for 3rd series on grid convergence [8]: (a) beam  
                     bending stress (Code 1, code X), (b) beam bending stress (Code W),  
                     (c) Beam end deflection (Code 1), (d) Beam end deflection (Code X),  
                     (e) actual factor of safety. 

 




